Abstract

We demonstrated that manganese (Mn)-doped GaN nanowires (NWs) exhibit p-type characteristics using current–voltage (I–V) characteristics in both heterojunction p–n structures (GaN:Mn NWs/n-Si substrate) and p–p structures (GaN:Mn NWs/p-Si). The heterojunction p–n diodes were formed by the coupling of the Mn-doped GaN NWs with an n-Si substrate by means of an alternating current (AC) dielectrophoresis-assisted assembly deposition technique. The GaN:Mn NWs/n-Si diode showed a clear current-rectifying behavior with a forward voltage drop of 2.4 V to 2.8 V, an ideality factor of 30 to 37, and a parasitic resistance in the range of 93 kΩ to 130 kΩ. On the other hand, we observed that other heterojunction structures (GaN:Mn NWs/p-Si) showed no rectifying behaviors as seen in p–p junction structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.