Abstract

In this study, ovalbumin (OVA) interacted with pectin (PE) to form soluble electrostatic complexes to improve the functional properties of high internal phase Pickering emulsions (HIPEs) under extreme conditions. The results showed that the stability of the OVA-PE soluble complexes-stabilized HIPEs was significantly better than that of the free OVA-stabilized HIPEs and was modulated by the biopolymer ratio. In particular, the complexes at an OVA:PE ratio of 1:1 (C-1:1) may form particulates with a core-shell structure by a flocculation mechanism. The C-1:1-stabilized HIPEs had the smallest oil droplet size (11.34 ± 1.14 μm) and the best resistance to extreme environmental stresses due to their strong, rigid structure and dense interfacial architecture. The in vitro digestion results showed that the bioaccessibility (from 18.3% ± 0.5% to 38.8% ± 4.8%) of curcumin improved with increasing PE content. Our work is helpful in understanding OVA-PE complexes as stabilizers for HIPEs and their potential applications in food delivery systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.