Abstract
Currently, the fast growth and advancement in technologies demands promising supercapacitors, which urgently require a distinctive electrode material with unique structures and excellent electrochemical properties. Herein, binder-free manganese iron sulfide (Mn–Fe–S) nanostructures were deposited directly onto Ni-foam through a facile one-step electrodeposition route in potentiodynamic mode. The deposition cycles were varied to investigate the effect of surface morphologies on Mn–Fe–S. The optimized deposition cycles result in a fragmented porous nanofibrous structure, which was confirmed using Field Emission Scanning Electron Microscopy (FE−SEM). X-ray photoelectron spectroscopy (XPS) confirmed the presence of Mn, Fe, and S elements. The energy dispersive X-ray spectroscopy and elemental mapping revealed a good distribution of Mn, Fe, and S elements across the Ni-foam. The electrochemical performance confirms a high areal capacitance of 795.7 mF cm−2 with a 24 μWh cm−2 energy density calculated at a 2 mA cm−2 current density for porous fragmented nanofiber Mn–Fe–S electrodes. The enhancement in capacitance is due to diffusive-controlled behavior dominating the capacitator, as shown by the charge–storage kinetics. Moreover, the assembled asymmetric coin cell device exhibited superior electrochemical performance with an acceptable cyclic performance of 78.7% for up to 95,000 consecutive cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.