Abstract
Carbon nanotubes (CNTs), as kinds of conductive carbon nanomaterials, were widely applied in neural tissue engineering due to their excellent electrical conductivity and good biocompatibility. In this study, the carboxyl-modified multi-walled carbon nanotubes (mMWCNTs) were introduced into sodium alginate/gelatin (Alg/Gel) scaffolds to optimize the function of the hybrid scaffolds. The Alg/Gel/mMWCNTs conductive scaffolds with mMWCNTs content of 1%, 3%, and 5% were prepared by freeze-drying, respectively. Following this, the physicochemical properties and biocompatibility of the hybrid scaffolds at different magnetic field intensities were evaluated. The conductive scaffolds were characterized by Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). In general, the mMWCNTs addition improved the hydrophilic, electrical conductivity and mechanical properties of the composite scaffold, and PC12 cells showed a trend of gradual increase over culture time. Particularly, the Alg/Gel-1%C scaffold exhibited the best cell proliferation behavior. Briefly, the surface contact angle decreased from 74 ± 1° to 60 ± 3°, the electrical conductivity and compressive modulus increased to 1.32 × 10-3 ± 2.1 × 10-4 S/cm and 1.40 ± 0.076 Mpa, the G1 phase from 55.67 ± 1.86% to 59.77 ± 0.94% and the G2 phase from 10.32 ± 0.35% to 13.93 ± 1.26%,respectively. In the SEM images, PC12 cells were well-shaped and densely distributed. Therefore, the Alg/Gel/mMWCNTs conductive scaffold has potential as a tissue engineering scaffold in nerve regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.