Abstract

Due to the limitations of the current treatment approaches of allograft and autograft techniques, treating bone disorders is a significant challenge. To address these shortcomings, a novel biomaterial composite is required. This study presents the preparation and fabrication of a novel biomaterial composite scaffold that combines poly (D, L-lactide-co-glycolide) (PLGA), mesoporous bioactive glass (MBG), molybdenum disulfide (MoS2), and simvastatin (Sim) to address the limitations of current bone grafting techniques of autograft and allograft. The fabricated scaffold of PLGA-MBG-MoS2-Sim composites was developed using a low-cost hydraulic press and salt leaching method, and scanning electron microscopy (SEM) analysis confirmed the scaffolds have a pore size between 143 and 240 μm. The protein adsorption for fabricated scaffolds was increased at 24 h. The water adsorption and retention studies showed significant results on the PLGA-MBG-MoS2-Sim composite scaffold. The biodegradation studies of the PLGA-MBG-MoS2-Sim composite scaffold have shown 54% after 28 days. In vitro, bioactivity evaluation utilizing simulated body fluid studies confirmed the development of bone mineral hydroxyapatite on the scaffolds, which was characterized using x-ray diffraction, Fourier transform infrared, and SEM analysis. Furthermore, the PLGA-MBG-MoS2-Sim composite scaffold is biocompatible with C3H10T1/2 cells and expresses more alkaline phosphatase and mineralization activity. Additionally, in vivo research showed that PLGA-MBG-MoS2-Sim stimulates a higher rate of bone regeneration. These findings highlight the fabricated PLGA-MBG-MoS2-Sim composite scaffold presents a promising solution for the limitations of current bone grafting techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.