Abstract
This study described a critical review of the biological system of self-curing agents and catalysts in which damage triggers an automatic healing response. In the first phase, a glass fiber-reinforced composite (GFRC) mono-leaf spring was prepared, which is made of glass fiber with a cement-based metal matrix. GFRC was further embedded with a microcapsule-based self-healing agent dicyclopentadiene (DCPD) that prevents sudden breakdown/failure of automobile suspension components resulting in micro-cracks produced in the material due to constant load application. In this paper, GFRC mono leaf spring samples were prepared with and without a healing agent under three different categories of varying thicknesses 20, 30, and 40 mm. In the second phase, the load-carrying capacity of all the samples was investigated and found a continuous increase in load-carrying capacity. Percentage increase in load carrying capacity before the time break was 1.09%, 1.42%, and 1.08% followed by time break of 05 min was 24.24%, 17.67%, and 21.67% respectively. It was clearly identified from the results that the addition of microcapsule-based healing substituents increases the load-carrying capacity of GFRC mono-leaf spring and avoids sudden fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.