Abstract

Plant proteins show advantages over animal-based proteins for biomaterial applications attributable to their ease of availability and suitable biodegradability. In this study, composite foams based on zein and 45S5 bioactive glass (BG) particles were produced through salt leaching for potential applications in bone tissue engineering (BTE) applications. Different characterization techniques were used including scanning electron microscopy for morphological and microstructural analysis, ATR-FTIR spectroscopy and X-ray diffraction for composition characterization and mechanical tests. Zein–BG composite scaffolds demonstrate enhanced bioactivity with a compressive modulus and strength around 5·7 MPa and 1·9 MPa, respectively. Zein–BG composite scaffolds constitute a new bioactive material with potential applications in BTE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.