Abstract

For the purpose of this research, single track details were manufactured in the shape of thin walls with a length of 100 mm and a height of 80 mm. Two welding speeds were chosen for this experiment–13.3 mm/s and 20.0 mm/s corresponding to the following heat inputs: 120 J/mm and 80 J/mm. The gas metal arc welding (GMAW) method was used for the build-up of the specimens in the cold arc pulse mode. The structure of the specimens was studied using X-ray diffraction (XRD) analysis carried out with CuKα radiation with a wavelength of 1.5406 Ǻ, optical microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Furthermore, the Vickers hardness of the samples was determined using a ZwickRoell DuraScan 10/20 G5 unit at a force of 1 N. A preferred crystallographic orientation towards the (200) plane was observed in all cases, however a vastly textured structure was observed with inclusions of peaks in the (111), (220), and (311) crystallographic planes. The full width at half maximum (FWHM) of samples taken from different stages of build-up was calculated indicating an increase of the dislocation density at the more advanced stages of specimen growth. Despite that an increase of the hardness was observed towards the top of both specimens. This is attributed to the change in the structure of the αAl + Si formations from an irregular one at the bottom of the specimens, towards a fibrous one at the top. The results are discussed in regard to the optimization of the build-up process during wire arc additive manufacturing (WAAM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call