Abstract

Porous silicon layer microstructure is sensitive to many parameters which need to be controlled during etching. These include not only anodization time, current density and applied potential but also electrolyte composition. Careful control these parameters will yield excellent reproducibility from run to run. In this paper we outline the advances in porous silicon surface quality and uniformity by recent techniques that have made the production of uniformly sized silicon nanocrystallites possible. In this work we used the oxidant H2O2 in the wet etching bath, with a high etching current. The resulting technique greatly improves the uniformity of the porous surface, producing a very thin layer of porous silicon. This is a significant improvement to the previous method. The result of a combined study of FTIR spectra and photoluminescence show that both quantum confinement and surface passivation are responsible of blue shift of the luminescence peak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.