Abstract

Titanium oxide (TiO2) film was deposited by rectification factor (RF) magnetron sputtering technique on glass substrates and p-Si (111) wafers to fabricate n-TiO2/p-Si heterojunction devices for the investigation of material and device properties, respectively. The structural, surface morphology, optical and electrical properties of TiO2 film were characterized by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), UV–visual (UV–Vis) spectral and dark current-voltage (I–V) measurement analyses. The deposited film layer was found to be homogeneous structure with crack-free surface. The bandgap value of TiO2 film was determined as 3.6[Formula: see text]eV and transmission was around 65–85% in the spectral range of 320–1100[Formula: see text]nm. The conductivity type of the deposited film was determined as n-type by hot probe method. These values make TiO2 film a suitable candidate as the n-type window layer in possible diode applications. TiO2 film was also deposited on p-Si (111) wafer to obtain Al/n-TiO2/p-Si/Al heterojunction device structure. The dark I–V characteristic was studied to determine the possible conduction mechanisms and diode parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.