Abstract

We present a sidewall transfer lithography (STL) process to fabricate silicon nanowires using the CMOS compatible materials SiO 2 , SiN and α-Si. The STL process is implemented using a single cluster tool for reactive ion etching (RIE) and plasma enhanced chemical vapor deposition (PECVD) with a maximum process temperature of 400 °C. Using three lithography masks, single and multiple silicon nanowires connected to contact areas can be defined. By optimizing layer thicknesses, RIE and deposition conformity we demonstrate wafer scale definition of 60 nm wide silicon nanowires using I-line stepper lithography. The silicon nanowires exhibit excellent characteristics for biosensing applications with subthreshold slopes of 75 mV/dec and a high on/off current ratio of more than 105.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.