Abstract

SiC-coated multi-walled carbon nanotubes (SiC-coated MWNTs) made by RF magnetron sputtering were introduced into the SiC suspensions to enhance the mechanical behaviors of reaction bonded silicon carbide ceramics. The composites were prepared by the epoxy resin curing and liquid silicon infiltration at 1550°Cfor 60min. The distribution, morphology, and reinforcing behaviors of MWNTs were investigated. X-ray diffraction (XRD) reveals that the MWNTs were reserved during the reaction sintering. The flexural strength and fracture toughness increase with MWNTs ranging from 0wt% to 0.5wt%, reaching the peaks value of 347MPa and 4.3MPam1/2 respectively at the MWNTs fraction of 0.5 wt%. This improvement derives from the MWNTs pullout. The consequent decline at MWNTs fraction of 1wt% is resulted from the corrosion of agglomerated MWNTs and the increase of residual silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.