Abstract

In this study, we report that the metal Cu deposited on a glass substrate is formed into a stable p-type Cu2O film with excellent properties through rapid thermal oxidation (RTO). The pre-deposited Cu film layer went through thermal oxidation in the temperature range of 200–500 °C in O2 and air ambient, and the electrical and optical properties were intensively investigated. The optimized p-type Cu2O film heat-treated at a temperature of 200 °C in an air ambient has a carrier concentration of 1.25×1017 cm-3, mobility of 0.51 cm2 V-1 s-1, and resistivity of 9.86 Ω cm; its optical band gap reaches about 2.4 eV. Using the p-type Cu2O film with i- and n-type amorphous silicon layers, heterojunction thin-film solar cells were fabricated on glass substrates. These transparent solar cells employed Ga-doped ZnO films as top and bottom electrodes. Solar cells with Cu2O film oxidized at 200 °C in an air ambient have an open circuit voltage of 0.36 V, short-circuit current of 15.2 mA/cm2, and photoelectric conversion efficiency of 1.98%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.