Abstract

AbstractNanofibrous biocomposite scaffolds of poly(vinyl alcohol) (PVA) and graphene oxide (GO) were prepared by using electrospinning method. The microstructure, crystallinity, and morphology of the scaffolds were characterized through X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The mechanical properties were investigated by tensile testing. Moreover, Mouse Osteoblastic Cells (MC3T3‐E1) attachment and proliferation on the nanofibrous scaffolds were investigated by MTT [3‐(4,5‐dimeth‐ylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide] assay, SEM observation and fluorescence staining. XRD and FTIR results verify the presence of GO in the scaffolds. SEM images show the three‐dimensional porous fibrous morphology, and the average diameter of the composite fibers decreases with increasing the content of GO. The mechanical properties of the scaffolds are altered by changing the content of GO as well. The tensile strength and elasticity modulus increase when the content of GO is lower than 1 wt %, but decrease when GO is up to 3 and 5 wt %. MC3T3‐E1 cells attach and grow on the surfaces of the scaffolds, and the adding of GO do not affect the cells' viability. Also, MC3T3‐E1 cells are likely to spread on the PVA/GO composite scaffolds. Above all, these unique features of the PVA/GO nanofibrous scaffolds prepared by electrospinning would open up a wide variety of future applications in bone tissue engineering and drug delivery systems. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.