Abstract

Cardiac patches are attractive option in overcoming the morbidities associated with cardiac disorders. Nanofibrous scaffolds were fabricated using polyurethane (PU) added with palmarosa (PR) and cobalt nitrate (CoNO3) using an electrospinning technique. Several characterizations were employed namely field emission scanning electron microscopy, wettability measurement, attenuated total reflectance infrared spectroscopy, thermal analysis, surface roughness measurements, and tensile testing. Further, biological response of the electrospun nanofibers were tested through coagulation study and MTS assay. As-spun composite mats showed smaller fibers than pure PU as depicted in morphology analysis. The interaction of PU with PR and CoNO3 was confirmed in infrared spectrum and thermal analysis. The incorporation of the PR decreased the wettability and while CoNO3 addition resulted in the hydrophilic nature as depicted in the contact angle measurements. Mechanical properties testing showed that elongation at break for the pristine PU was increased with the addition of PR and CoNO3. The surface measurements depicted that the incorporation of PR resulted in the improvement of the surface roughness while the addition of CoNO3 reduced the surface roughness of the pristine PU. The electrospun nanocomposites showed delayed blood clotting time compared to the pristine PU as shown in coagulation study. Both composites supported the better proliferation of fibroblast cells than pure PU. Therefore, novel composites with smaller fiber diameter, hydrophilicity, better mechanical properties, improved blood compatibility parameters, and good cell viability rates would be a promising candidate for cardiac tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call