Abstract

Background/purposeβ-Tricalcium phosphate (β-TCP) is an osteoconductive material which has been used for clinical purposes for several years, as is polycaprolactone (PCL), which has already been approved for a number of medical and drug delivery devices. In this study we have incorporated various concentrations of β-TCP into PCL with the aim of developing an injectable, mechanically strong, and biodegradable material which can be used for medical purposes without organic solvents. Materials and methodsThis study assesses the physical and chemical properties of this material, evaluates the in vitro bioactivity of the PCL/β-TCP composites, and analyzes cell proliferation and osteogenic differentiation when using human bone marrow mesenchymal stem cells (hBMSCs). ResultsThe results show that weight losses of approximately 5.3%, 12.1%, 18.6%, and 25.2%, were observed for the TCP0, TCP10, TCP30, and TCP50 composites after immersion in simulated body fluid for 12 weeks, respectively, indicating significant differences (P < 0.05). In addition, PCL/β-TCP composites tend to have lower contact angles (47 ± 1.5° and 58 ± 1.7° for TCP50 and TCP30, respectively) than pure PCL (85 ± 1.3°), which are generally more hydrophilic. After 7 days, a significant (22% and 34%, respectively) increase (P < 0.05) in alkaline phosphatase level was measured for TCP30 and TCP50 in comparison with the pure PCL. ConclusionPCL/TCP is biocompatible with hBMSCs. It not only promotes proliferation of hBMSCs but also helps to differentiate reparative hard tissue. We suggest 50% (weight) PCL-containing β-TCP biocomposites as the best choice for hard tissue repair applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.