Abstract

Abstract Photocurable inorganic–organic hybrid materials were prepared from colloidal-silica nanoparticles synthesized through the sol–gel process and using acryl resin. The synthesized colloidal-silica nanoparticles had uniform diameters of around 20 nm and were organically modified, using methyl and methacryl functional silanes, for efficient hybridization with acryl resin. The organically modified and stabilized colloidal-silica nanoparticles could be homogeneously hybridized with acryl resin without phase separation. The successfully fabricated hybrid materials exhibit efficient photocurability and simple film formation due to the photopolymerization of the organically modified colloidal-silica nanoparticles and acryl resin upon UV exposure as well as an excellent optical transmission of above 90% in the visible region and an enhanced surface smoothness of around 1 nm RMS roughness. They likewise exhibit improved thermal and mechanical characteristics, much better than those of acryl resin. Lastly and most importantly, these photocurable hybrid materials fabricated through the synergistic combination of colloidal-silica nanoparticles with acryl resin are candidates for optical and electrical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call