Abstract

This study developed a novel thermoreversible emulsion gel system based on high amylose maize starch (HAMS) and investigated the impact of the oil-to-water ratio on its physicochemical properties and encapsulation performance (using curcumin as model guest molecule). Electron microscopy showed a tightly porous network structure of the HAMS-based emulsion gels. Thermal results revealed a sol-gel transition occurring in the range of 59.41 to 67.64 °C for the prepared emulsion gels. Rheological analysis suggested that all samples displayed shear-thinning behavior and HAMS-based emulsion gels exhibited typical gel-like behavior with the gel strength bolstered by higher aqueous phases. Particle size analysis showed that droplet size of emulsion gel decreased from 245 to 184 nm with increased starch aqueous phase content. Texture profile analysis indicated enhanced strength, hardness, and chewiness of the emulsion gel with increased aqueous phases. Curcumin encapsulation efficiency in the HAMS-based emulsion gel also improved with higher aqueous phase content, reaching up to 93.82 %, which attributed to the smaller droplets caused increased interfacial area. The novel HAMS-based emulsion gel system showed considerable encapsulation capacity and desirable mechanical properties. It provided valuable insights into the application of starch-based emulsion gels in food and medical area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.