Abstract

AbstractThe tactile sensors for human support robots which can detect both normal stress and shear stress and have human-friendly surface have been proposed. Micro-cantilevers adequately inclined by Cr deflection control layer were fabricated by the surface micromachining on SOI wafer. The cantilevers were covered with the PDMS elastomer for human-friendly surface. When the stress is added to the surface of elastomer, the deformation of cantilevers along with elastomer is detected as piezoresistive layer in the cantilevers. The piezoresistive response of the cantilever is analyzed by FEM calculation. The response of the fabricated tactile sensor to normal stress and shear stress was measured by output from this resistance. The tactile sensor with PDMS elastomer can detect both normal stress and shear stress. On the other hand, it hardly has sensitivity to shear stress of orthogonal direction to the cantilever. It means that the tactile sensor can distinguish the direction of shear stress. The sensitivity of tactile sensor vary widely with cantilever pattern and relation between direction of cantilever and crystallite orientation of Si. It is suggested that the sensitivity of tactile sensor can be improved by using FEM estimation and selective ion implantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call