Abstract

This study optimized a Ni-Ce-Zr catalyst and its contents for a CO2 methanation reaction by selecting a disk shape with a high mechanical strength, good durability, and thermal emission resistance. The physical and chemical properties of the obtained catalysts were determined by X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller, hydrogen temperature-programmed reduction, and temperature-programmed desorption of CO2 analyses. In addition, the activity and stability of the obtained catalysts were then evaluated and compared. It was determined that the combined Ni-Ce-Zr catalyst positively affects the conversion of CO2 to CH4. Furthermore, a CO2 methanation experiment was performed under atmospheric pressure conditions at 200–350 °C. The CO2 conversion was 82% at 300 °C, and the CH4 selectivity was 100%. A durability test revealed a difference in the conversion of approximately 6% for 1000 h, which indicates that the catalytic performance was maintained for a significant period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call