Abstract

Generation of alternative source of energy is one of the talks of the present decade. In the present work, the focus has been given to produce energy from perovskite-based solar cells. For this purpose, a unique and novel nano-structured perovskite material ethyl ammonium lead chloride (C2H5NH3 +PbCl3 −) was prepared through a novel co-precipitation route using ethyl amine (C2H5NH2) and hydrochloric acid as the starting precursors with aqueous solution of Pb(CH3COO)23H2O. Finally acetic acid was added in the solution, and this solution was allowed to concentrate and cooled down at room temperature. Then the synthesized material was deposited over TiO2 film in order to fabricate the solar cell. Systematic study using XRD, SEM, UV, and photo conversion were conducted to properly analyze the structural, optical, and electrical properties of device. In the presence of light, this perovskite-based solar cell has shown energy conversion efficiency (η) of around 5.2% which is appreciably good. This result has depicted that this material is promising material for fabrication of highly efficient solar cells. This technology can be applied in industrial scale as substitute of the conventional energy in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call