Abstract

The synthesis and characterization of one-dimensional (1-D) tubular and fibrous nanostructured materials have recently received highly attention. Various morphologies of 1-D nanostructured titanate materials including nanosheets, nanotubes, nanowires, and nanoribbons have recently been successfully synthesized using the alkaline hydrothermal method. In spite of the controversy of the chemical structures and formation mechanisms, titanate nanostructures have attracted much attention on applications of dye-sensitized solar cell, hydrogen sensing, lithium storage and photocatalysis because of their unique features of high specific surface area, ion-exchange capacity and aspect ratio, and unique optical and electrochemical properties. The morphology and microstructure of titanate nanostructures are highly dependent on the preparation conditions. In this review, we highlight the synthesis of TiO(2)-derived nanomaterials under various hydrothermal conditions. The patents for fabrication of various morphologies of nanostructures are also introduced. Effects of preparation parameters including hydrothermal temperature, duration, alkaline concentration, starting materials, and post-treatment on the morphology and microstructure of titanate nanomaterials are reviewered. In addition, the microwave-assisted method for fabrication of 1-D titanate nanostructures is discussed and compared. The applications of titanate nanomaterials in photocatalysis, ion-exchange, and lithium storages are also introduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.