Abstract

The aim of present study is to investigate the potential of nanostructured lipid carriers (NLCs) in improving the oral bioavailability of quetiapine fumarate, a second-generation antipsychotic drug. Quetiapine Fumarate (QF) loaded NLC were prepared by hot homogenization followed by an ultrasonication method. Response surface methodology - central composite design (CCD) was used to systemically examine the influence of concentration of capmul MCM EP, concentration of poloxamer 188 and concentration of egg lecithin on particle size (PS) and % entrapment efficiency (% EE) and to optimize the NLC formulation. The CCD consists of three factored design with five levels, plus and minus alpha (axial points), plus and minus 1 (factorial points) and the centre point. A mathematical relationship between variables was created by using Design Expert software Version 12. The statistical evaluations revealed that three independent variables were the important factors that affected the PS and % EE of QF loaded NLC. The best fitted mathematical model was linear and quadratic for PS and % EE respectively. The optimized formulations found with 218.1±0.14nm of PS and 93±0.16% of % EE. Results illustrated the superiority of developed QF loaded NLC formulation as a stable drug delivery system, providing better bioavailability with the possibility of better treatment for psychological disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call