Abstract

Thermal energy storage has been recognized as one of the most important technologies for the utilization of renewable energy sources and conserving energy. In this investigation, through combination of polyethylene glycol (PEG) as a phase change material (PCM), polyamid6 (PA6) and various nanoparticles (SiO2, Al2O3, Fe2O3 and ZnO) as supporting materials, novel form-stable PCMs-based composites were fabricated by single nozzle electrospinning. The structure, morphology and thermal properties of the prepared nanofiber-nanocomposite-enhanced phase change materials (NEPCMs) were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and differential scanning calorimeter, respectively. Based on the results, nanocomposites-nanofibers were successfully fabricated with high thermal stability and reliability. It is observed that in all composites, the fiber diameter is decreased by increasing the nanoparticles loading. The lowest average diameter obtained was for Fe2O3 composite. Al2O3 composite showed the maximum thermal conductivity enhancement. This study suggests that the fabricated nanocomposite-PCMs offer proper phase transition temperature range and high heat enthalpy values and hence, have potential for thermal energy storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call