Abstract

• Nano/amorphous dual-phase FINEMET microwire was fabricated and characterized. • The unique dual-phase structure is correlated to its different cooling experience. • The extracted microwires possess high tensile strength over 1800 MPa. • Excellent EMI property was elucidated by the multiple magnetic loss mechanisms. A nano/amorphous dual-phase FINEMET microwire was fabricated directly from molten alloy without any interstage annealing by a home-built melt extraction technique (MET). The microstructure, mechanical and pronounced electromagnetic interference shielding (EMI) effectiveness of this dual-phase microwire has been systematically evaluated. The structural analysis reveals that the as-cast FINEMET microwire consists of two distinct structures, i.e., amorphous and nanocrystalline phase due to their different cooling characteristics. Compared with other reported FINEMET alloys, the extracted microwire exhibits a superior high tensile strength of 1800 MPa. These nanocrystals enabled dual-phase microwires also exhibit large EMI SE values in the frequency range of 8–12 GHz (X-band) due to the multiple magnetic loss mechanisms associated with their intrinsic structural characteristics. The combination of excellent mechanical properties and electromagnetic properties make this kind of melt-extracted dual-phase FINEMET microwire promising for a range of structure and multifunctional applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call