Abstract

Monodisperse PLGA–alginate core–shell microspheres with controlled size and homogeneous shells were first fabricated using capillary microfluidic devices for the purpose of controlling drug release kinetics. Sizes of PLGA cores were readily controlled by the geometries of microfluidic devices and the fluid flow rates. PLGA microspheres with sizes ranging from 15 to 50μm were fabricated to investigate the influence of the core size on the release kinetics. Rifampicin was loaded into both monodisperse PLGA microspheres and PLGA–alginate core–shell microspheres as a model drug for the release kinetics studies. The in vitro release of rifampicin showed that the PLGA core of all sizes exhibited sigmoid release patterns, although smaller PLGA cores had a higher release rate and a shorter lag phase. The shell could modulate the drug release kinetics as a buffer layer and a near-zero-order release pattern was observed when the drug release rate of the PLGA core was high enough. The biocompatibility of PLGA–alginate core–shell microspheres was assessed by MTT assay on L929 mouse fibroblasts cell line and no obvious cytotoxicity was found. This technique provides a convenient method to control the drug release kinetics of the PLGA microsphere by delicately controlling the microstructures. The obtained monodisperse PLGA–alginate core–shell microspheres with monodisperse size and homogeneous shells could be a promising device for controlled drug release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.