Abstract

The aim of this study was to evaluate the effect of oat β-glucan on the formation mechanism, microstructure and physicochemical properties of konjac glucomannan (KGM) composite hydrogel. The dynamic rheology results suggested that the addition of oat β-glucan increased the viscoelastic modulus of the composite hydrogel, which was conducive to the formation of a stronger gel network. Gelling force experiments showed that hydrogen bonds and hydrophobic interactions participated in the formation of the gel network. Textural profile analysis results found that the amount of oat β-glucan was positively correlated with the elasticity, cohesiveness and chewiness of the composite hydrogel. The water-holding capacity of the composite hydrogel was enhanced significantly after the addition of oat β-glucan (p < 0.05), which was 18.3 times that of the KGM gel. The thermal stability of KGM gel was enhanced after the addition of oat β-glucan with the increase in Tmax being approximately 30 °C. Consequently, a composite hydrogel based on KGM and oat β-glucan was a strategy to overcome pure KGM gel shortcomings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.