Abstract

Integrable GaAs-based high-contrast gratings (HCGs) are fabricated and characterized, targeting applications in high-speed vertical-cavity surface-emitting lasers (VCSELs). A Ga <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.51</sub> In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.49</sub> P sacrificial layer beneath the GaAs layer is employed to create a low index surrounding HCG strips by selective etching. Experimental results show that the finite-size HCG has a reflectivity of 93% from 1270 to 1330 nm for the transverse magnetic polarization, which is consistent with the calculated results. An HCG-based Fabry-Perot filter array formed by the different HCGs, air gap, and GaAs substrate is demonstrated. The measured resonance wavelengths of the filter arrays are consistent with the theoretical results, which implies that the resonance wavelength of such filters can be tuned by parameters of the HCG itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.