Abstract
AbstractIn this study, microneedles (MNs) were successfully fabricated using the 3D printing method, which provides ease of production and reproduction in the desired size. Chi/Dox MNs drug delivery systems containing doxorubicin (Dox) were successfully produced in the presence of glutaraldehyde, which was coated with chitosan (Chi) and used as a crosslinker to prolong the drug release of the produced MNs. The obtained Chi/Dox MNs drug distribution systems were characterized by SEM, FTIR, zeta, contact angle, surface energy, compression test, and drug release tests. With the SEM analyzes performed before and after coating, it was observed that the MNs were in micro dimensions, and the diameters of the MNs tips before and after coating were 41.22 μm and 54.58 μm, respectively. After the compression test, it was analyzed that each MNs could withstand a force of about 76 N. The zeta potentials of Chi and Dox solutions were measured as 8.8 and 21.5 mV, respectively. FTIR, zeta potential, contact angle, and surface energy results confirm the Dox coating and their interactions. It has been observed that Chi/Dox MNs has successfully extended drug release time without drug‐burst, and their use in skin cancer treatment is promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.