Abstract
This paper presents a simple, fast, and inexpensive method for the large-scale fabrication of polymer-based humidity sensors on glass substrates. The nanoparticles were synthesized using laser ablation, this is an environmentally friendly method for fabricating metal nanoparticles and provides a unique tool for nanofabrication. In this work, humidity sensing material, poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) along with different kinds of nanoparticles, Au and Ag, are employed to enhance the stability and sensitivity to humidity sensing. Based on the experimental results, the TEM images show the crystallinity of the nanoparticles, indicating alloying of the nanoparticles. Based on XRD, this result indicates that the amorphous structure of PEDOT:PSS is only slightly affected by mixing with nanoparticles. According to FE-SEM analysis, the formation of interconnected crystallites facilitates the charge transport mechanism in the polymer chains due to improved conduction paths. Has been Characterization of humidity sensors Using (LCR), study the effect of humidity on capacitance at different frequencies (100[Formula: see text]Hz, 1[Formula: see text]kHz, 10[Formula: see text]kHz, and 100[Formula: see text]kHz), and the response and recovery time characteristics. The results show excellent linear and active behavior of the capacitive humidity response. Ag, PEDOT, and Au NPs have a synergistic effect, exhibiting a more extended sensing range and better stability. This work shows a high-sensitivity and low-cost sensing material for different humidity sensor applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.