Abstract

High-quality factor (Q >; 1700) GaN-based blue resonant-cavity light-emitting diodes (RCLEDs) incorporating an InGaN/GaN multiquantum well active region, two high-reflectivity dielectric-distributed Bragg reflectors, and a thin indium tin oxide (ITO) layer are fabricated by a two-step substrate transfer technique. Electroluminescence measurements showed a narrow linewidth of 0.26 nm at the wavelength of 450.6 nm by precisely placing the ITO layer at the node position of the electric field, corresponding to a high Q-value of 1720. Further, adopting a chemical-mechanical polishing (CMP) technique to polish the GaN surface after the removal of sapphire substrate, an even higher Q-value of 2170 was obtained. This improvement was attributed to the exclusion of the defect-rich buffer layer and the achievement of a smooth surface with a root mean square roughness below 1 nm. The integrated electroluminescence intensity was enhanced by 40% as compared with the RCLEDs without CMP at a current density of 8 kA/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.