Abstract

AbstractArtificial muscles have important applications in areas ranging from robotics to prosthetics and medical devices. In this study, highly deformable artificial muscle fibers that utilize superior actuating properties of liquid crystal elastomers and liquid-like deformability of liquid metal are reported. An effective and low-cost fabrication approach using screen printing technique is developed. The actuating properties of the artificial muscle fibers, including the dependence of temperature, contraction strain, and pulling force of the artificial muscle fiber on electric heating current and heating time, are characterized. The results could provide important guidance to design and for development of soft systems that utilize the actuating mechanisms of liquid crystal elastomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.