Abstract
An advantage of electron beam melting (EBM) additive manufacturing technology is the ability to process high-melting temperature, refractory, and/or reactive materials. This research focused on the processing of high-purity niobium precursor powder using EBM technology primarily for the freeform design and fabrication of next-generation superconducting radiofrequency (SRF) cavities. SRF accelerating cavities have been used in particle accelerators for over 35 years and are used in today’s leading applications in high-energy and nuclear physics. Procedures were developed and employed in this research to successfully fabricate high-density niobium parts (>99 % relative density) with a thermal conductivity of ~50 W/m-K that were evaluated mechanically (140 ± 14 MPa yield strength and 225 ± 11 MPa ultimate tensile strength) and compared to wrought reactor-grade niobium (135 ± 17 MPa yield strength and 205 ± 17 MPa ultimate tensile strength). Re-engineered SRF cavities were successfully fabricated whose complex design was intended to overcome nonuniform Lorentz forces during operation. The fabrication of niobium using EBM suggests that similar procedures from this research can be applied to successfully fabricate other refractory materials such as niobium alloys as well as highly conductive materials such as copper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.