Abstract

Abstract This research involves the preparation of a biosensor using silicon oxide for biomedical applications, and its effective use for the detection of target DNA hybridization. An electrochemical DNA biosensor was successfully fabricated by using (3-aminopropyl) tri-ethoxysilane (APTES) as a linker molecule combined with gold nanoparticles (GNPs) on a thermally oxidized SiO2 thin film. The size of the GNPs was calculated by utilizing UV–vis data with an average calculated particle size within the range of 30 ± 5 nm, and characterization by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The GNP-modified SiO2 thin films were electrically characterized through the measurement of capacitance, permittivity and conductivity using a low-cost dielectric analyzer. The capacitance, permittivity and conductivity profiles of the fabricated sensor clearly differentiated DNA immobilization and hybridization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.