Abstract

The GaInSb material system is attractive for application in therm ophotovoltaic (TPV) cells since its band gap can be tuned to match the radiation of the emitter. At present, most of the TPV cells are fabricated using epitaxial layers and hence are expensive. To reduce the cost, Zn diffusion using elemental vapors in a semiclosed diffusion system is being pursued by several laboratories. In this paper, we present studies carried out on Zn diffusion into n-type (Te-doped) GaSb substrates in an open tube diffusion furnace. The dopant precursor was a 2000 Å thick, zinc doped spin-on glass. The diffusion was carried out at temperatures ranging from 550 to 600°C, for times from 1 to 10 h. The diffused layers were characterized by Hall measurements using step-and-repeat etching by anodic oxidation, secondary ion mass spectrometry measurements, and TPV device fabrication. For diffusion carried out at 600°C, the junction depth was 0.3 µm, and the hole concentration near the surface was 5 × 1019/cm3. The external quantum efficiency, measured without any anti-reflection coating of the TPV cells fabricated using mesa-etching had a maximum value of 38%. Masked diffusion was also carried out by opening windows in a Si3N4 coated, GaSb wafer. TPV cells fabricated on these structures had similar quantum efficiency, but lower dark current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.