Abstract

A poly(butyl methacrylate) (PBMA)/polypropylene (PP) blended fiber was prepared via reactive extrusion and melt spinning based upon the mechanism of in situ compatibilization, and its capacity to absorb organic liquid, gel fraction and remaining ratio were investigated. In addition, the miscibility between PBMA and PP, crystallization behavior and morphology of the blended fiber were characterized. The results indicate the blended fiber can absorb a certain amount of liquid, such as toluene, chloroform, and trichloroethylene, etc., and its absorption capacity gradually weakens and even disappears with increasing the mass fraction of PP in the mixture of PBMA and PP. The results obtained by thermogravimetric (TG) analysis show the miscibility between PBMA and PP becomes better due to an increase of the interactions between two phases under the effect of in situ compatibilization reaction, and the blended fiber has relatively better thermal stability with an increase in the mass fraction of PP. X-ray diffraction (XRD) results demonstrate the additional amount of PP has a significant impact on its crystallization capacity for the blended fiber, along with in situ compatibilization reaction. The results observed via field emission scanning electron microscope (FESEM) reveal that PP can efficiently improve the spinnability of PBMA, and endow the blended fiber with a near-optimal morphology. However, in situ compatibilization reaction also has a marked influence on the surface and cross-section morphology of the blended fiber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.