Abstract

Toughening of boron carbide (B4C) without hardness degradation, was achieved by hierarchical structures consisting of B4C micro-grains, titanium diboride (TiB2) grains, and graphitic phases along B4C grain boundaries. Such hierarchical structures were uniquely achieved by co-sintering of B4C micro-powder and carbon-rich B4C nano-powder, in situ formation of TiB2, and by utilizing the short sintering time of field-assisted sintering technology. Toughening mechanisms observed after micro-indentation include crack deflection and delamination of graphite platelets, micro-crack toughening and crack deflection/bridging by TiB2 grains. Fracture toughness enhancement was achieved while maintaining hardness: 4.65 ± 0.49 MPa m1/2 fracture toughness and 31.88 ± 1.85 GPa hardness for a micro/nano B4C-TiB2 composite (15 vol% TiB2 and 15 vol% B4C nano-powders) vs. 2.98 ± 0.24 MPa m1/2 and 32.46 ± 1.67 GPa for a reference micro B4C sample. In future, macro-scale mechanical testing will be conducted to further evaluate how these micro-scale hierarchical structures can be translated to macro-scale mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.