Abstract

Titanium dioxide is one of the best semiconductor photocatalysts available for photocatalytic reaction of dye pollutants. To prevent the recombination caused by the relatively low photocatalytic efficiency, Ag doped TiO2 nanofiber was prepared by electrospinning method. The photocatalysts (pure TiO2 nanofiber and Ag doped TiO2 nanofiber) were characterized by FE-SEM, XRD, XPS, and PL analysis. These photocatalysts were evaluated by the photodecomposition of methylene blue under UV light. Ag doped TiO2 nanofiber was found to be more efficient than pure TiO2 fiber for photocatalytic degradation of methylene blue. The photocatalytic degradation rate was applied to pseudo-first-order equation. The degradation of Ag doped TiO2 nanofiber was significantly higher than the degradation rate of pure TiO2 nanofiber. Activation energy was calculated by applying Arrhenius equation from the rate constant of photocatalytic reaction. The activation energies for the pure TiO2 nanofibers calcined at 400 and 500 °C were 16.981 and 12.187 kJ/mol and those of Ag doped TiO2 nanofibers were 18.317 and 7.977 kJ/mol, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call