Abstract
Arrays of nanowires and nanotubes of antimony-telluride (Sb2Te3) have been fabricated by an electrodeposition technique. Scanning electron microscopy was employed to characterize the morphology and size of the fabricated Sb2Te3 nanowires and nanotubes. Wavelength dispersive spectroscopy analysis confirmed the composition of the fabricated nanowires and nanotubes. The composition of the nanowires fabricated at a cathodic current density of 10 mA cm−2 and nanotubes fabricated at a cathodic current density of 5.5 mA cm−2 was found to be ∼39% Sb and ∼61% Te (2 : 3 ratio between Sb and Te). The fabricated Sb2Te3 nanowire and nanotube arrays were found to be polycrystalline with no preferred orientation. The average lamellar thickness of the nanowires and nanotube crystallites was determined using the Scherrer equation and found to be ∼36 nm and ∼43 nm, respectively. The measured room temperature Seebeck coefficients for the Sb2Te3 nanowires and nanotubes were +359 µV K−1 and +332 µV K−1, respectively, confirming that the Sb2Te3 nanowires and nanotubes were p-type. The electrical resistance measurements indicated that the resistance of the Sb2Te3 nanowires and nanotubes decreased with increasing temperature, consistent with semiconducting behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.