Abstract

A Mach–Zehnder interferometer (MZI) composed of electro-optical polymer/silicon hybrid slot waveguides is reported. The device is designed to be asymmetrical so that the modulator is in a linear workspace when no electric field is applied to the initial operating state. We rely on the fast and strong nonlinearities of CLD-1/PMMA that infiltrates silicon rather than on the slower free-carrier effect in silicon. The modulated arm waveguides are designed in the shape of silicon/polymer hybrid slot waveguides to increase the interaction of the polymer material with the light field. The results show that the loss of the proposed MZI is 3.51 dB with a core size of 420μm × 160μm, and the half-wave voltage of the MZI is 2.1 V at 1550 nm, which provides the possibility of application in measuring small signals from an electrocardiogram with the optical principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.