Abstract

A successful synthesis of mesostructured hydroxyapatite (HAp) using cetyltrimethylammonium bromide and poly(amido amine) dendrimer porogens has been reported. A comparative study of physicochemical properties has also been performed. The formation of a single-phase hydroxyapatite crystal in synthesized HAp particles with an aspect ratio of 2.3 was revealed. The formation of the mesostructural nature of HAp was proven with a specific surface area (56-63 m(2)/g) and a certain pore size (4.7-5.5 nm), although there were significant differences between particles from surfactant micelle and dendrimer porogens. In addition, the surface modification of mesoporous HAp particles was carried out using poly(amido amine) dendrimer. The content and thickness of the dendrimer coating on particle surfaces were highly dependent on the pH. At pH 9 or greater, the coating thickness corresponded to at least a double layer of dendrimer, but it decreased sharply with decreasing pH from 9 to 6, in agreement with the protonation of amine groups in the dendrimer, indicating the strong interaction of nonionic dendrimer with HAp. The developed dendrimer-functionalized mesoporous hydroxyapatite materials may be applicable in biocomposite material and/or bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call