Abstract

Abstract Friction stir processing has evolved as a novel method to fabricate surface metal matrix composites. The feasibility to make B4C particulate reinforced copper surface matrix composite is detailed in this paper. The B4C powders were compacted into a groove of width 0.5 mm and depth 5 mm on a 9.5 mm thick copper plate. A tool made of high carbon high chromium steel; oil hardened to 63 HRC, having cylindrical profile was used in this study. A single pass friction stir processing was carried out using a tool rotational speed of 1500 rpm, processing speed of 40 mm/min and axial force of 10 kN. A defect free interface between the matrix and the composite layer was achieved. The optical and scanning electron micrographs revealed a homogeneous distribution of B4C particles which were well bonded with the matrix. The hardness of the friction stir processed zone increased by 26% higher to that of the matrix material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.