Abstract

AbstractNi/Al reactive multilayer foils were fabricated by cold rolling method and self-propagating reactions in these foils were investigated. A two-stage phase formation process was observed in the ignition experiment. The first step is the lateral growth of Al3Ni phase from isolated nucleation sites and the following coalescence into a continuous layer; the second step is the growth of such Al3Ni layers in the perpendicular direction of the interface until all Al is consumed. As there is still Ni available, Al3Ni will continuously react with Ni until no Ni is left, and the final reaction product turns out to be ordered B2 AlNi compound. X-ray diffraction (XRD) experiments showed that the reaction product of the cold rolled foil was the same as the physical vapor deposition (PVD) foil. The reaction process was studied by differential scanning calorimetry (DSC). Three peaks can be identified from the DSC curve. Cold rolled foils were heated to different peak temperatures obtained from DSC curve with the same heating rate as DSC. XRD results for such foils showed that the first two peaks were the exothermic formation of Al3Ni, while the last one was for the formation of AlNi. The enthalpy of the reaction for the cold rolled foil was calculated to be -57.5 KJ/mol, which was in good agreement with the formation enthalpy of AlNi (-59 KJ/mol). The reaction velocities of the first formation stage were measured to be 7mm/s for cold rolled foils, which were much smaller than the reaction velocities of PVD foils (which range between 1-30 m/s).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call