Abstract

The development of environmentally friendly biodegradable films is urgently required for reducing the plastic pollution crisis and ensuring food safety. Thus, here we aimed to prepare ZIF-8 that has delivery ability for gallic acid (GA) and further incorporated this material (GA@ZIF-8) into carrageenan (CA) matrix to obtain a series of CA-GA@ZIF-8 films. This design significantly improved the mechanical strength and UV barrier and reduced water vapor permeability, moisture content, and swelling rate of the CA films. CA-GA@ZIF-8 films exhibited sustainable release of GA and controlled migration of Zn2+ up to 144 h in a high-fat food simulator. Also, the composite films performed high-efficiency antioxidant activities (83.29 % for DPPH and 62.11 % for ABTS radical scavenging activity) and 99.51 % antimicrobial effects against Escherichia coli O157:H7 after 24 h. The great biocompatibility of GA@ZIF-8 and CA-GA@ZIF-8-10 % was confirmed by hemolysis, cell cytotoxicity, and mice model. Finally, the preservation experiments showed that CA-GA@ZIF-8 films could effectively maintain freshness and reduce the growth of microorganisms and oxidation of lipids during the preservation of beef. These results suggest that CA-GA@ZIF-8 films holds promising potential for improving the quality preservation of beef.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call