Abstract

Recreating cerebral tissue using a tissue-mimicking phantom is valuable because it provides a tool for studying physiological and biological processes related to tissues without the necessity of performing the study directly in the tissue or even in a patient. The reproduction of the optical properties allows investigation in areas such as imaging, optics, and ultrasound, among others. This paper presents a methodology for manufacturing agarose-based phantoms that mimic the optical characteristics of brain tissue using scattering and absorbing agents and proposes combinations of these agents to recreate the healthy brain tissue optical coefficients within the wavelength range of 350 to 500 nm. The results of the characterization of the manufactured phantoms propose ideal combinations of the used materials for their use in controlled environment experiments in the UV range, following a cost-effective methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.