Abstract

All bioresorbable polymeric implants are radiolucent, making them undetectable under the X-rays. Therefore, to improve their X-ray visibility, the high effective atomic number (Z eff) material such as Pt, Au, Ta, Ba, or its alloy are attached to the body of the bioresorbable implant. However, during the in vivo degradation, these bio-inert heavy metals can either detach or leach out from the lesion site and accumulate into the vital organ, leading to severe health complications. Thus, as a strategy, the novel biodegradable and radiopaque Mg alloy was produced to impart X-ray visibility in the biopolymer. Here, the Mg was alloyed with the optimized ratio of heavy metals, i.e., Zn and Y. The radiopaque Mg alloy was characterized and powdered to the size of 25–20 µm. Further, it was blended with radiolucent Poly-L-lactic acid (PLLA) and polycaprolactone (PCL) polymer. The Bi-axially expanded (BAE) tubes of PLLA/PCL and PLLA/PCL/Mg alloy (5% wt.) were extruded for fabricating cardiovascular stents. The BAE tube comparison studies were performed for thermal stability, wettability, surface roughness, and mechanical properties. The potential of 5% Mg alloy in the polymeric matrix was evaluated as a nucleating, reinforcing, and radiopaque agent. In vitro accelerated degradation study was performed in the physiological fluid to evaluate the pH variation and decomposition rate. Finally, in vitro biocompatibility was assessed by evaluating the behavior of L929 fibroblast cells, followed by the blood biocompatibility test on the blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.