Abstract
Bi-doped Y2O3 phosphor thin films were fabricated by RF magnetron sputtering and their photoluminescence (PL) emission characteristics were systematically investigated depending on substrate temperature, film thickness, and Bi3+ ion concentration. Visible PL emission via 3P1➔1S0 transition of Bi3+ ions could be observed by ultraviolet light excitation and its intensity was increased with increasing the substrate temperature and the film thickness. This is due to enhancement of the film crystallinity with increasing substrate temperature and film thickness and due to interaction volume increase with increasing the film thickness. However, PL intensity had the maximum value with Bi3+ ion concentration of 1.09at.% owing to concentration quenching effect. These films showed high transmittance of above 95% in the visible and near-infrared region and had refractive index of 1.87~1.97 depending on the wavelength. These results show the potential of Bi-doped Y2O3 phosphor thin films not only as a spectrum converting layer but also as an antireflective coating layer in crystalline Si solar cells, considering that refractive index of the Bi-doped Y2O3 film is nearly similar to that of silicon nitride film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.