Abstract

An aspherical lens is fabricated from an ultraviolet (UV) curable polymer and is characterized by measuring its focal spot. Electrostatic force is employed to manipulate the shape of the liquid polymer lens. Experiment results show that a liquid lens in a strong electrostatic field can be distorted from initial spherical shape to parabolic to even near cone shape. With in situ measurement of the surface profile and focal spot, an aspherical liquid lens with good performance can be cured to a solid aspherical lens by UV light. A probe scanning microscope is employed to accurately measure the focal spot of the aspherical lens, and the modulation transfer function (MTF) of the aspherical lens is calculated to characterize it. A focal spot of 1.825 microm diameter, an MTF of 800 line pairs/mm cutoff spatial frequency, and a Strehl ratio of 0.742 are achieved. These demonstrate the feasibility of fabricating an aspherical lens with small aberrations by using this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.