Abstract

New magneto-photonic assembly designs for high-gain antennas require dielectrics with a significant anisotropy and low loss at GHz frequencies. This paper describes an approach to fabricate such dielectrics from ceramic laminates. These laminates consist of two ceramics with largely different permittivities and low dielectric losses. Alternating layers of commercially available α-Al2O3 and Nd-doped BaTiO3 were laminated using organic adhesives. Equivalent permittivity tensors and loss tangents were characterized using a resonant cavity-based approach, which was coupled with a finite-element method full-wave solver. Measured permittivity values were in good agreement with mean field predictions; a minimum loss tangent 1.1 × 10−3 was obtained when using one-component epoxy (Loctite®-3982) adhesive. Application of two-component epoxy (M-bond 610) adhesive results in a slightly higher loss but better mechanical properties and machinability. These laminates were used to demonstrate high gain in a prototype antenna with 6 misaligned anisotropic dielectric layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.