Abstract

Abstract:Pb-based organometal halide perovskite solar cells have passed the threshold of 20 % power conversion efficiency (PCE). However, the main issues hampering commercialization are toxic Pb contained in these cells and their instability in ambient air. Therefore, great attention is devoted to replace Pb by Sn or Bi, which are less harmful and - in the case of Bi - also expected to yield enhanced stability. In literature, the most efficient hybrid organic-inorganic methylammonium bismuth iodide (MBI) perovskite solar cells reach PCE up to 0.2 %. In this work, we present spin-coated MBI perovskite solar cells and highlight the impact of the concentration of the perovskite solution on the layer morphology and photovoltaic (PV) characteristics. The solar cells exhibit open-circuit voltages of 0.73 V, which is the highest value published for this type of solar cell. The PCE increases from 0.004 % directly after processing to 0.17 % after 48 h of storage in air. 300 h after exposure to air, the cells still yield 56 % of their peak PCE and 84 % of their maximum open-circuit voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.